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Abstract

Muhammad Ridwan Murshed
DESIGN MAPS FOR FRACTURE RESISTANT FUNCTIONALLY GRADED

MATERIALS
2015-2016

Shivakumar I. Ranganathan, Ph.D.
Master of Science in Mechanical Engineering

The objective of this research is to generate design maps to identify

functionally graded microstructures with enhanced fracture toughness. Several

Functionally Graded Materials (FGMs) with an edge crack and membrane loading

are considered and the resulting J-integral values are computed numerically using

Finite Element Analysis. In order to capture the resulting stress fields accurately,

Barsoum elements are used in the vicinity of the crack tip and the simulations are

carried out for several crack lengths (a) and material contrasts (κ). The averages of

the J-integral values are used to determine the normalized Stress Intensity Factors

which are then benchmarked with existing analytical solutions in special cases.

Furthermore, in order to facilitate an objective comparison between FGMs and

homogeneous materials, a constraint is imposed on each of the microstructure so

that the volume averaged modulus remains the same although the spatial variation

is very different. Subsequently, we demonstrate that a FGM could perform either

better or worse than the reference homogeneous material depending upon the crack

length, the type of functional gradation and the material contrast (thereby the local

gradient of the modulus at the crack tip). Finally, the notion of ‘Fracture Index’ is

introduced using which ‘design maps’ are created in the (a − κ) space that reveal

microstructures with enhanced fracture resistance. These maps are universal since

any Functionally Graded Material can be mapped as a point on this space.
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Chapter 1

Introduction

Functionally Graded Materials are a subset of inhomogeneous materials and

have unique mechanical, thermal and electrical properties due to the controlled

spatial variation of material properties. This is in contrast to several homogeneous

materials that typically have lower structural integrity when compared to their

FGM counterparts. In fact, inhomogeneous materials are ubiquitous in nature and

most materials exhibit some form of inhomogeneity when considered at appropriate

length scales. Functionally Graded Materials have been found to be useful in

several applications in engineering and medicine. For instance, FGMs have been

used for synthesizing thermal barrier coating for space applications [1, 2], design

of columns [3, 4], piezoelectric and thermoelectric devices [5, 6] and in dental

implants which have demonstrated superior mechanical behavior, biocompatibility

and osseointegration improvement [7, 8]. Also, with the advent of additive

manufacturing, functionally graded bone implants with superior fracture resistance

can be printed in a cost-effective manner [9, 10]. It is therefore imperative to

understand the behavior of FGMs in order to effectively design composites for target

applications.

In the past, several techniques have been used to examine the fracture of

FGMs and some of these are noteworthy. Gibson [11] laid the foundation for

analyzing FGMs by modeling soil as a heterogeneous material. In the study, the

author examines an elastic half space in which the Young’s Modulus, E is varied with

depth. Analytical and semi-analytical approaches were subsequently used by Delale

and Erdogan [12], Erdogan and Wu [13] and Chan et al. [14] in order to investigate

cracks in heterogeneous materials. In particular, Delale and Erdogan [12] derive

the integral equation for mode-I loading and prove that the Poisson’s ratio, v has a

1
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negligible impact on the Stress Intensity Factor (SIF). By exponentially varying the

Young’s Modulus in the direction parallel to the crack, the authors demonstrate that

the crack surface displacement is lower in the stiffer portion of the heterogeneous

material as compared to the homogeneous material and vice-versa. Along similar

lines, Erdogan and Wu [13] analyze a FGM that has a crack perpendicular to the

boundaries. The Young’s Modulus is varied along the thickness of the material in

order to obtain the results under various loadings such as fixed grip, membrane

and bending. The mode-I SIF is obtained for edge cracks and it is seen that the

inhomogeneity in the material directly impacts the stress distribution and the SIF.

For membrane and bending loadings, the SIF is higher for lower material contrasts

and is lower for higher material contrasts. This is in contrast to fixed grip loadings

where the trend is vice-versa.

Chan et al. [14] employ a numerical approach for analyzing the mode-III crack

problem. A displacement based integral equation is transformed into a hyper singular

integral equation that has a varying Shear Modulus, G. The authors highlight that the

normalized SIF is independent of Shear Modulus for a homogeneous material. On the

contrary, the SIF is inversely proportional to the Shear Modulus in a heterogeneous

material. The results using displacement based approach for normalized SIF on the

inhomogeneous material are compared with the slope based approach (analytical

solution). The results are in good agreement with each other and it is concluded

that the displacement based method could be used to replace the integral method.

An alternate approach to analyze fracture using Extended Finite Element

Method (XFEM) was proposed by Dolbow and Gosz [15]. In their work, a novel

approach was used for computing the mixed mode SIF at the crack tip of FGMs.

This involved employing the interaction energy contour integral and representing

it as a domain integral which was later used in the XFEM analysis. The authors

2
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observed that for an edge crack, an increase in the material gradation decreased both

the mode-I and mode-II normalized SIF.

Rao and Rahman [16] used the Element Free Galerkin’s Method (EFGM) to

obtain the SIF for a 2D stationary crack in a heterogeneous medium. The material

parameters were spatially varied as smooth functions and several integral equations

were obtained for analyzing mixed mode fracture. Five problems were taken into

consideration and the results obtained for mode-I and mixed mode fracture were

compared with analytical as well as numerical solutions. It was seen that EFGM

results were in good agreement with the reference solutions.

Several authors have also employed numerical simulations based on Finite

Element Method (FEM) to model fracture in FGMs. In particular, Eischen [17]

developed equations for analyzing energy release rates and mixed mode SIF of

heterogeneous materials using an extended version of the Williams eigenfunction

expansion technique. This path-independent integral was juxtaposed with FEM and

a composite strip was analyzed with a hyperbolic tangential variation of the Young’s

Modulus. The author proved that the SIF gradually increased with an increase in

the heterogeneous parameter and was always bounded. This is in contrast to the

analytical results which demonstrated that the SIF was unbounded for a specific

crack length. Along similar lines, Kim and Paulino [18] examined stationary cracks

in a FGM and varied the elastic moduli as a smooth function of spatial coordinates.

This was then incorporated into the stiffness matrix and the SIF for mode-I along with

mixed mode cases were compared using three new approaches for analyzing fracture:

i) path independent J-integral method for inhomogeneous materials; ii) modified

crack-closure integral method (MCC); iii) displacement correlation technique (DCT).

The authors concluded that for mode-I case, the solution obtained using any of these

three approaches were identical.

3
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Gu et al. [19] demonstrated a Finite Element based method for obtaining

SIF of FGMs using the J-integral method for mode-I fracture. In their study, the

authors proved that the second term in the domain integral equation that captured

the inhomogeneity in FGMs was negligible as compared to the first term which was

the standard domain integral. As a result, the domain integral equation could be

evaluated around the crack tip by mesh refinement. Thus, the SIF for FGMs were

obtained without taking the material gradient into consideration. Similarly, Gu and

Asaro [20] considered the problem of a semi-infinite crack in a FGM strip that was

subjected to edge loading. Also, in plane deformation was modeled in order to

analytically examine the mixed mode SIF. The authors determined that the material

gradation directly impacted the SIF and specifically the mode-II SIF played a major

role in the fracture of FGMs. In addition, FGMs were able to withstand higher

loadings as compared to their homogeneous counterparts.

Bao and Wang [21] illustrated the use of a FGM that consisted of ceramic and

metal layers. This was a linearly elastic FGM in which the Young’s Modulus varied

throughout the thickness of the film. In order to study the effects of mechanical and

thermal loadings on the functionally graded coating, Finite Element Analysis was

carried out using ABAQUS. The authors concluded that FGM reduced the Crack

Driving Force (CDF) significantly as compared to a ceramic layer when thermal loads

were applied. For mechanical loadings, the effect of coating gradation on the CDF was

not very high when compared with a ceramic coating. In addition, Bao and Cai [22]

examined the delamination cracking phenomena that was observed when thermal

expansion led to an imbalance between functionally graded coating and substrate.

The thermo-mechanical property of the FGM that consisted of ceramic and metallic

layers was varied with respect to the position of the coating along the direction of

the thickness. It was observed that the gradation played a major impact on the CDF

of the delamination crack by reducing the CDF significantly which would thereby

4
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increase the fracture resistance of the material. In addition, buckling was also studied

and the functional gradation led to a decrease in buckling in the delamination crack.

Anlas et al. [23] performed Finite Element Analysis and obtained the J-integral

values for a FGM plate with an edge crack in order to calculate SIF. Numerical

simulations were carried out using ABAQUS and the domain was discretized into

forty parts to model the gradation in the Young’s Modulus. Elements consisting of

four nodes and four integration points were used for obtaining the results. Further,

the authors discussed that the J-integral was path dependent for an inhomogeneous

material. However, the value for the J-integral could be used to determine the SIF

for a heterogeneous material in the vicinity of the crack tip. Finally, the authors

benchmarked their results for uniform traction and uniform displacement loadings

and were successful in obtaining accurate results.

More recently, Hossain et al. [24] proposed a new methodology to determine

the toughness of a heterogeneous medium that was independent of the details of the

boundary condition. Instead, the authors numerically simulated a domain by applying

a surfing boundary condition to a steadily growing macroscopic crack. Subsequently,

the effective toughness was obtained by using the energy release rate required to

propagate the crack.

In summary, a significant amount of literature exists for determining the

fracture toughness of FGMs. However, to the best of our knowledge there is no

framework to unify the treatment of FGMs in order to identify microstructures that

maximize fracture toughness. The notion of ‘Fracture Index’ and ‘design maps’ will

be introduced in this thesis to fill this void in existing literature. In the subsequent

sections, we develop the necessary mathematical models and the resulting boundary

value problems are then solved numerically using Finite Element Analysis. The

results obtained are first benchmarked with existing solutions for special cases. After

5
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validating the numerical model, the ‘Fracture Index’ is computed for Functionally

Graded Materials as a function of crack length and material contrast. This procedure

is repeated for a variety of functional distributions to generate the ‘design maps’. It

will be demonstrated that these maps highlight the admissible regions for designing

microstructures with enhanced fracture resistance.

6
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Chapter 2

Mathematical Background

The J-integral is widely used in order to accurately obtain Stress Intensity

Factors (SIFs) at crack tips (see Abd-Elhady and Sallam [25], Aliha et al. [26] and

Dancette et al. [27]). It is an alternative to the strain energy release rate and was

first proposed by Rice [28] in order to analyze cracks. For Functionally Graded

Materials, Delale and Erdogan [12] studied the problem of Mode-I loading with a

variation of Young’s Modulus in the direction parallel to the crack. The authors

stated “it is reasonable to expect that in nonhomogeneous materials with continuous

and continuously differentiable elastic constants the nature of the stress singularity at

a crack tip would be identical to that of a homogeneous solid”. Similarly, Erdogan [29]

stated that if a crack was embedded into an inhomogeneous medium with smoothly

varying elastic properties, the square root nature of the stress singularity seemed to

remain unchanged.

The conjecture by Delale and Erdogan was analytically proven by Eischen

[17] using an eigenfunction expansion technique similar to that of Williams [30]. In

the study, Eischen considered a constant Poisson’s ratio and a general functional

form of the Young’s Modulus variation. The author proved that a r− 1
2 stress and

strain singularity existed at the crack tip, r being the radial distance measured from

the crack tip. In addition, the angular variation of the singular stress field and the

associated displacements around a crack tip in a Functionally Graded Material were

shown to be exactly the same as the angular variation in a homogeneous material

(see Eischen [17] and Honein and Herrmann [31]). With this framework laid out, we

will now demonstrate the J-integral in two dimensions and its relation to the Stress

Intensity Factor.

7
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In general, the J-integral can be defined as [32, 33]

J = lim
Γ→0

∫
Γ

n ·H · qdΓ (1a)

where

H = W I− σ · ∂u
∂x

(1b)

and Γ is a contour around the crack tip (see Fig. 1), the limit Γ→ 0 indicates that Γ

shrinks onto the crack tip, q is a unit vector in the virtual crack extension direction, n

is the outward normal to Γ, I is the Kronecker Delta, W is the strain energy density,

σ is the stress component and u is the displacement. Moreover, it has been observed

that the J-integral is path dependent around a crack tip in FGMs. However, the

J-integral value for a path adjacent to the crack tip in FGMs is identical to that

for homogeneous materials as Γ → 0. This approach has been employed by various

authors such as Gu et al. [19], Anlas et al. [23], Nikbakht and Choupani [34] and

Martínez-Pañeda and Gallego [35].

 

 

 x2 

x1 
q 

G 

n 

Figure 1: Contour for evaluation of the J-integral

8
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We now illustrate the relation of J-integral with Stress Intensity Factor for a

linear elastic material which can be defined as [34, 36]

J = 1
8πKT ·B−1 ·K (2a)

where

K = [KI , KII , KIII ]T (2b)

and KI , KII , KIII are the Stress Intensity Factors for mode-I, mode-II and mode-III

loadings, respectively. Also, B is the pre-logarithmic energy factor matrix (see

Shih and Asaro [37] and Barnett and Asaro [38]). Now, consider two independent

equilibrium states of a cracked body which are actual and auxiliary. The actual state

corresponds to the displacement and stress fields for the given boundary conditions.

Whereas, the auxiliary state characterizes the displacement and stress fields in the

vicinity of the crack tip [16]. The J-integral for the actual state can be defined as

[34, 36]

J = 1
8π [KIB

−1
11 KI + 2KIB

−1
12 KII + 2KIB

−1
13 KIII ]

+(terms not involving KI)
(3)

where I, II and III correspond to 1, 2 and 3 when indicating the components of B.

Next, the J-integral for an auxiliary state with pure mode-I loading can be seen as

[34, 36]

J Iaux = 1
8πkI ·B

−1
11 · kI (4)

where, kI is the Stress Intensity Factor for the auxiliary state. The superposition of

actual Eq. (3) and auxiliary states Eq. (4) results in another equilibrium state for

9
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which the J-integral is expressed as [34, 36]

J Itot = 1
8π [(KI + kI)B−1

11 (KI + kI) + 2(KI + kI)B−1
12 KII + 2(KI + kI)B−1

13 KIII ]

+(terms not involving KI or kI)
(5)

Now, consider the terms not involving KI or kI in J Itot and J as equal. Using Eqs. (3,

4 & 5) an interaction integral can be defined as [34, 36]

J Iint = J Itot − J − J Iaux = kI
4π (B−1

11 KI +B−1
12 KII +B−1

13 KIII) (6)

Moreover, if the calculations are repeated for mode-II and mode-III loadings, the

resulting linear system in Eq. (6) can be written as [34, 36]

Jαint = kα
4πB

−1
αβKβ (7)

where, α and β are both I, II and III. Next, Eq. (7) is modified by computing kα

= 1 and the resulting equation is [34, 36]

K = 4πB · Jint (8a)

and

Jint = [J Iint, J IIint, J IIIint ]T (8b)

Here, J Iint, J IIint and J IIIint represents the interaction integrals for mode-I, mode-II and

mode-III loadings, respectively. Based on the definition of the J-integral (see Eq. 1a),

the interaction integrals Jαint can be expressed as [34, 36]

Jαint = lim
Γ→0

∫
Γ

n ·Mα · qdΓ (9)

10
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where

Mα = σ : εαauxI− σ ·
(
∂u
∂x

)α
aux

− σα
aux ·

∂u
∂x

(10)

Here, ε is the strain component, the subscript aux represents three auxiliary pure

Mode I, Mode II, and Mode III crack-tip fields for α = I, II, III, respectively. Also,

Γ is a contour around the crack tip (see Fig. 1) and the limit Γ→ 0 indicates that Γ

shrinks onto the crack tip.

The interaction integrals, Jαint were evaluated using the virtual crack extension

technique in ‘ABAQUS’ (see Fischer et al. [39], Dancette et al. [27] and Aliha et

al. [26]). The analysis was carried out by defining the node set along with the number

of contours around the crack tip (see Abd-Elhady and Sallam [25] and Bernard et

al. [40]). In addition, each contour formed an element set and it consisted of rings of

elements surrounding the crack tip (see Abaqus Analysis User’s Manual [41], Nikbakht

and Choupani [34] and Brocks and Scheider [42]). The element set that formed each

ring from the node set was used in order to calculate the J-integral (see Bernard

et al. [40]). In the present work, the J-integral values were obtained from second,

third and fourth contours (see Fig. 4) and an average J-integral value was used from

these contours for calculating the Stress Intensity Factor. This approach has been

successfully employed by several other authors including Kamaya [43], Kim et al. [44]

and Bayley and Bell [45].

We now illustrate the relation of J-integral with Stress Intensity Factor for a

linear elastic material under mode-I loading which can be defined as (see Abd-Elhady

and Sallam [25], Shih and Asaro [37] and Barnett and Asaro [38])

J = 1
8πKI ·B−1

11 ·KI (11a)

11
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and

B−1
11 = 8π(1− v2)

E
(11b)

where KI is the Stress Intensity Factor and v is the Poisson’s ratio. Using Eqs. (11a)

and (11b), the J integral can be written as [16, 36]

J = K2
I (1− v2)
E

(12)

At this stage, it is convenient to illustrate that for Functionally Graded Materials

under mode-I loading and plane strain conditions, Eq. (12) can be defined as

J =
K2
I (1− v2

tip)
Etip

(13)

where, Etip and vtip are the Young’s Modulus and Poisson’s ratio evaluated at the

crack tip, respectively (see Rao and Rahman [16], Kim and Paulino [46], Jin and

Batra [47] and Yau et al. [48]). Eq. (13) will be employed in this research in order to

extract the Stress Intensity Factor for FGMs. In the next section, we will illustrate

the methodology to numerically obtain the fracture toughness of Functionally Graded

Materials as a function of crack length and material contrast.

12
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Chapter 3

Methodology

The methodology employed in the current study is summarized in Figs. (2a &

b). It can be seen that any point on Fig. (2a) reveals the Young’s Modulus at that

spatial location and the color reveals the contrast for the specific FGMmicrostructure.

Then, ‘Fracture Index’ is obtained and ‘design maps’ are created in the (a−κ) space

that demonstrate regions for constructing microstructures with enhanced fracture

resistance (see Fig. 2b).
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Figure 2: Methodology employed: (a) FGM Strip with Crack Length (a) [The
red color indicates high contrast and the blue color indicates low contrast], Width
of the Strip (W), Length of the Strip (L), Stress Applied (σ), E(x) which is the
linear distribution of Young’s Modulus and (b) Design Map with Fracture Index (φ),
non-dimensional Crack Length ( a

W
) and Material Contrast (κ)

In the present work, several Functionally Graded Materials with an edge

crack length (a) and membrane loading are considered and the resulting J-integral

13
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values are obtained numerically using Finite Element Analysis. The averages of

the J-integral values are used to determine the normalized Stress Intensity Factors

which are then benchmarked with existing analytical solutions in special cases. The

procedure is repeated for a variety of crack lengths and material contrasts (κ).

Subsequently, the notion of ‘Fracture Index’ is introduced (see Eq. 20) using which

‘design maps’ are created in the (a− κ) space that highlights the admissible regions

for designing fracture resistant materials. In order to objectively compare various

functional distributions, all microstructures considered in this study have the same

volume averaged Young’s Modulus. Based on this constraint, several functionally

graded microstructures were created as illustrated in TABLES (1-4). The functions

examined were linear, quadratic, exponential and cosine. The linear variation of

Young’s Modulus is demonstrated in Fig. (3a) and is defined as

E(x) = (E2 − E1)x+ E1, (0 ≤ x ≤ 1) (14)

where, E1 is the Young’s Modulus at the left boundary and E2 is the Young’s Modulus

at the right boundary. The linear function can also be interpreted as the first two

significant terms in a Taylor series expansion of any FGM distribution. Similarly, the

quadratic variation of Young’s Modulus can be predicted by the first three significant

terms in a Taylor series expansion (see Fig. 3b). The quadratic function can be

defined as

E(x) = (3E2 + 3E1 − 6)x2 + (−2E2 − 4E1 + 6)x+ E1, (0 ≤ x ≤ 1) (15)

The linear and quadratic functions illustrated by Eqs. (14 & 15) have been

used in the past by various authors such as Zhong and Cheng [49] and Elishakoff

and Guede [50]. Furthermore, an exponential variation of the Young’s Modulus is

14
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illustrated in Fig. (3c). Such a distribution has been widely used by several authors

such as Erdogan and Wu [13], Rao and Rahman [16] and Guo and Noda [51] and is

defined as follows

E(x) = E1exp[ln(E2

E1
)x], (0 ≤ x ≤ 1) (16)

Finally, we consider a cosine distribution of Young’s Modulus as given in

Fig. (3d). This variation was chosen to mimic biological materials such as bone

that have hierarchical structure of protein and mineral embedded in layers in order to

increase the stiffness and toughness of the bone (see Fratzl et al. [52]). Because

a distribution of material properties in a biological material directly leads to a

change of the energy consumed by fracture, the cosine function used to examine

this phenomenon is

E(x) = E0[1 + ρ− 1
ρ+ 1cos(2πx)], (0 ≤ x ≤ 1) (17)

Here, E0 = 1 and 1 ≤ ρ ≤ 6. In the next section, these functions will be used in order

to study the fracture performance of Functionally Graded Materials.

15
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Table 1: Function used for the gradation-Linear Function:
E(x) = (E2 − E1)x+ E1

Microstructure E1 (MPa) E2 (MPa)
1 0.001988 1.998
2 0.01980 1.980
3 0.0613 1.939
4 0.1818 1.818
5 0.4805 1.519
6 1 1
7 1.519 0.4805
8 1.818 0.1818
9 1.939 0.0613
10 1.980 0.01980
11 1.998 0.001988

Table 2: Function used for the gradation-Quadratic Function:
E(x) = (3E2 + 3E1 − 6)x2 + (−2E2 − 4E1 + 6)x+ E1

Microstructure E1 (MPa) E2 (MPa)
1 0.001 1
2 0.001 0.1
3 0.01 0.3162
4 0.1 1
5 0.6 1.897
6 1 1
7 0.2217 0.0701
8 0.4151 0.04151
9 0.7411 0.02344
10 1.684 0.01684
11 1.9 0.0019
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Table 3: Function used for the gradation-Exponential Function:
E(x) = E1exp[ln(E2

E1
)x]

Microstructure E1 (MPa) E2 (MPa)
1 0.006915 6.915
2 0.04652 4.652
3 0.1128 3.567
4 0.2558 2.558
5 0.5324 1.684
6 1 1
7 1.684 0.5324
8 2.558 0.2558
9 3.567 0.1128
10 4.652 0.04652
11 6.915 0.006915

Table 4: Function used for the gradation-Cosine Function:
E(x) = E0[1 + ρ−1

ρ+1cos(2πx)]

Microstructure E0 (MPa) ρ
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
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(a) Linear (b) Quadratic

 

κ = 1000
κ = 100
κ = 31.6
κ = 10
κ = 3.16
κ = 1
κ = 0.316
κ = 0.1
κ = 0.0316
κ = 0.01
κ = 0.001

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Width (mm)

Y
ou

ng
's

 M
od

ul
us

 (
M

P
a)

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Width (mm)

Y
ou

ng
's

 M
od

ul
us

 (
M

P
a)

κ = 1000
κ = 100
κ = 31.6
κ = 10
κ = 3.16
κ = 1
κ = 0.316
κ = 0.1
κ = 0.0316
κ = 0.01
κ = 0.001

(c) Exponential (d) Cosine

 

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Width (mm)

Y
ou

ng
's

 M
od

ul
us

 (
M

P
a) κ = 1000

κ = 100
κ = 31.6
κ = 10
κ = 3.16
κ = 1
κ = 0.316
κ = 0.1
κ = 0.0316
κ = 0.01
κ = 0.001

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Width (mm)

Y
ou

ng
's

 M
od

ul
us

 (
M

P
a)

ρ = 1
ρ = 2
ρ = 3
ρ = 4
ρ = 5
ρ = 6

Figure 3: Plots of Material Contrast (κ and ρ) as a function of (Width, Young’s
Modulus)
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Chapter 4

Results and Discussion

We begin by first validating our Finite Element model with selected benchmark

problems published in the literature. Next, the fracture response of Functionally

Graded Materials (FGMs) under membrane loading is analyzed as a function of

material contrast and crack length. Subsequently, the notion of ‘design maps’ is

introduced using which admissible regions for the design of microstructures with

enhanced fracture resistance can be obtained1.

4.1 Model Validation

The validation of Finite Element (FE) results is a very necessary step before

proceeding to construct the ‘design maps’. For this purpose, FE models were

developed for homogeneous and FGM strips subjected to membrane loading (see

Fig. 4). The FE model for each specimen was then calibrated by comparing the

predicted results with the ones published in the literature.

4.1.1. Stress Intensity Factors For Homogeneous Materials. A

numerical model was setup in order to extract the Stress Intensity Factors for a

homogeneous strip with an edge crack as seen in Fig. (4). Here, W is the width of

the strip, L is the length of the strip, σ is the stress applied and a is the crack length.

Following Rao and Rahman [16], the variables were set as follows: σ = 1 MPa, W

= 1 mm, L = 4 mm. In addition, a range of crack lengths between 0.2 mm and 0.6

mm were investigated (a = 0.2, 0.3, 0.4, 0.5 and 0.6 mm). The boundary conditions

used for FE modeling are shown in Fig. (4) in which point A was pinned and the

edge BA was restricted from movement in the vertical direction. Half the geometry

1See also [53] M. R. Murshed, S. I. Ranganathan, and F. H. Abed, “Design
maps for fracture resistant functionally graded materials,” European Journal of
Mechanics - A/Solids, vol. 58, pp. 31 – 41, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0997753816000036
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was numerically simulated by using symmetry boundary conditions and Barsoum

elements were used at the crack tip [54, 55]. The material was assumed elastic with

E = 2 MPa, v = 0.3 and a plane strain condition was specified.
 

First Contour 

Barsoum 

elements at 

Crack tip 

x 

y 

 

L 

W 

a 
A B 

B A 

Second Contour 

Third Contour Fourth Contour 

Figure 4: Homogeneous/FGM Strip with various contours for evaluating the
J-integral

Next, model verification was conducted and a comparison was made with Chen

et al. [56] in terms of the normalized Stress Intensity Factor defined as follows

K0 = KI

σ
√
πa

(18)

where, σ is the applied stress, a is the crack length and KI is the Stress Intensity

Factor. The results obtained for normalized Stress Intensity Factors, K0 are

benchmarked with the analytical results obtained by Chen et al. [56] as presented

in TABLE (5). It is evident from TABLE (5) that the present FE model is capable

of predicting accurate results as the percentage difference is less than 1% for all crack

lengths.
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Table 5: Model Verification of a homogeneous strip for various Crack Lengths (a)

a Current Chen et al. % difference
(mm) Work [56] with [56]
0.2 1.3633 1.3734 0.7
0.3 1.6554 1.6627 0.4
0.4 2.1055 2.1065 0.05
0.5 2.8158 2.8297 0.5
0.6 4.018 4.0301 0.3

4.1.2. Stress Intensity Factors For Functionally Graded Materials.

We will now discuss the exponential variation of the Young’s Modulus which was

employed using Eq. (16) on the FGM Strip (see Fig. 4). The benchmark cases that

were taken into consideration include Finite Element Analysis carried out by Rao and

Rahman [16], Erdogan and Wu [13], Chen et al. [56] and Kim and Paulino [18]. In

order to quantify the material contrast, the following variable κ is defined as

κ = E2

E1
(19)

In the present analysis, four material contrasts of κ = 0.1, 0.2, 5 and 10

were examined. The predicted results for normalized Stress Intensity Factors were

compared with four different studies as listed in TABLES (6-9). A range of crack

lengths between 0.2 mm and 0.6 mm were investigated (a = 0.2, 0.3, 0.4, 0.5 and

0.6 mm). Comparison of the results obtained with reference solutions reinforced

the validity of the FE models. For example, computational results showed that the

percentage difference with respect to Rao and Rahman [16] is less than 6% for κ =

0.1, less than 5% for κ = 0.2, less than 3% for κ = 5 and less than 5% for κ =

10. In addition, the plots for the above TABLES can be seen in Fig. (5). It can

be observed that normalized SIF increases with an increase in crack lengths for all

material contrasts. Similar trends were observed by various authors such as Jin and

Paulino [57] and Noda and Lan [58].
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In the next section, the validated FE model in Fig. (4) will be utilized to

analyze the fracture response of Functionally Graded Materials as a function of

material contrast and crack length. Several functional distributions will be considered

in order to construct ‘design maps’ which unify the treatment of heterogeneous

microstructures.
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Table 6: Model verification for different Crack Lengths (a) with κ = 0.1

a Current Rao & Erdogan & Chen et al. Kim & % difference
(mm) Work Rahman [16] Wu [13] [56] Paulino [18] with [16]
0.2 1.2659 1.3374 1.2965 1.3193 1.284 5.3
0.3 1.7889 1.8976 1.8581 1.8642 1.846 5.7
0.4 2.4552 2.5938 2.5699 2.5588 2.544 5.3
0.5 3.381 3.5472 3.5701 3.5213 3.496 4.7
0.6 4.8069 4.9956 5.188 5.0726 4.962 3.8

Table 7: Model verification for different Crack Lengths (a) with κ = 0.2

a Current Rao & Erdogan & Chen et al. Kim & % difference
(mm) Work Rahman [16] Wu [13] [56] Paulino [18] with [16]
0.2 1.3766 1.4193 1.3956 1.4188 1.39 3.0
0.3 1.7843 1.8668 1.8395 1.8497 1.831 4.4
0.4 2.3688 2.4657 2.4436 2.4486 2.431 3.9
0.5 3.2134 3.3297 3.3266 3.3234 3.292 3.5
0.6 4.5609 4.6905 4.7614 4.786 4.669 2.8

Table 8: Model verification for different Crack Lengths (a) with κ = 5

a Current Rao & Erdogan & Chen et al. Kim & % difference
(mm) Work Rahman [16] Wu [13] [56] Paulino [18] with [16]
0.2 1.1592 1.1269 1.1318 1.1622 1.132 2.9
0.3 1.4011 1.3754 1.3697 1.3899 1.37 1.9
0.4 1.7867 1.7576 1.7483 1.7746 1.749 1.7
0.5 2.4146 2.3772 2.3656 2.4125 2.366 1.6
0.6 3.5083 3.4478 3.4454 3.5736 3.448 1.8

Table 9: Model verification for different Crack Lengths (a) with κ = 10

a Current Rao & Erdogan & Chen et al. Kim & % difference
(mm) Work Rahman [16] Wu [13] [56] Paulino [18] with [16]
0.2 1.0388 0.9958 1.0019 1.0324 1.003 4.3
0.3 1.2719 1.2343 1.2291 1.2499 1.228 3.0
0.4 1.6419 1.598 1.5884 1.6146 1.588 2.7
0.5 2.2467 2.1889 2.1762 2.2234 2.175 2.6
0.6 3.3065 3.2167 3.2124 3.3371 3.212 2.8
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Figure 5: Model verification for varying material contrasts, κ

24



www.manaraa.com

4.2 Functionally Graded Materials Under Membrane Loading

We now consider the fracture response of several Functionally Graded

Materials (FGMs) as a function of the non-dimensional crack length, a
W

and material

contrasts (κ and ρ)2. At this stage, it is convenient to introduce the Fracture Index

(φ) as follows [53]

φ = KFGM
0
Khom

0
(20)

where KFGM
0 and Khom

0 are the normalized Stress Intensity Factors for a Functionally

Graded Material and its equivalent homogeneous material, respectively. When

φ < 1, the fracture resistance of FGM is better than the homogeneous material

and vice-versa.

Fig. (6a) shows that for linear functions with contrasts greater than 1, the

FGM is superior to its homogeneous counterpart since φ < 1. It can also be noted

that for smaller crack lengths ( a
W
≤ 0.3), FGM is always advantageous over a

homogeneous material irrespective of the material contrast. This is not the case

for larger non-dimensional crack lengths. Similarly, Fig. (6b) demonstrates that

quadratic functions with all material contrasts and a
W

ranging from 0.2 to 0.3 can be

employed for designing fracture resistant microstructures. Also, when a
W

= 0.4 and

κ ≥ 1, FGM outperforms the homogeneous material and vice-versa. For a
W
> 0.4, the

use of quadratic functional gradation is not beneficial for any contrast κ. Likewise,

Fig. (6c) illustrates that exponential gradation with contrasts greater than 1 is

always beneficial irrespective of a
W
. Along similar lines, Fig. (6d) shows that cosine

functions with a
W
≤ 0.4 have enhanced fracture resistance irrespective of the material

contrast, ρ. In the next section, ‘design maps’ highlighting the admissible regions for

constructing fracture resistant microstructures will be illustrated.

2See also [59] M. R. Murshed, S. I. Ranganathan, and F. H. Abed, “Effect of material contrast
and crack length on the fracture of functionally graded materials,” Mach Conference, Annapolis,
MD, USA, 2015.
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4.3 Design Maps

With the framework laid out in the previous section, it is now possible to

construct ‘design maps’ to unify the treatment of FGMs. Such maps can be visualized

as contours of Fracture Index, φ in the ( a
W

, log10(κ)) space (see Fig. 7). As

discussed before, regions with φ < 1 highlight microstructures with enhanced fracture

resistance. From Fig. (7a), it is evident that as long as κ > 1, FGMs with linear

gradation in the modulus have enhanced fracture resistance irrespective of the crack

length. This is also the case when a
W

< 0.4 irrespective of the material contrast.

Similarly, a quadratic functional gradation [see Fig. (7b)] is beneficial when a
W
< 0.4

(irrespective of material contrast). The ‘Fracture Index’ is greater than one for all

other combinations of a
W
, log10(κ). Hence, such quadratric FGMs result in designs

which are inferior to the homogeneous materials. Finally, exponential functions offer

enhanced fracture resistance when κ > 1 (see Fig. 7c).

Alternatively, the ‘design maps’ can be visualized as contours of Fracture

Index, φ in the ( a
W

, dE
dx
) space (see Fig. 8). Here, (dE

dx
) is the local gradient of

Young’s Modulus evaluated at the crack tip. Although (dE
dx
) is a dependent variable,

it offers a different perspective into the design of fracture resistant microstructures.

As mentioned before, regions with φ < 1 highlight microstructures with enhanced

fracture resistance. From Fig. (8a), it can be seen that for FGMs with linear variation

in the Young’s Modulus, almost any dE
dx

(negative or positive) is beneficial irrespective

of the crack length. Likewise, a quadratic functional distribution [see Fig. (8b)] offer

enhanced fracture resistance when a
W
< 0.4 for all combinations of dE

dx
(negative or

positive). Lastly, exponential functions with dE
dx

< 0 will result in FGMs that are

superior to homogeneous materials as the ‘Fracture Index’ is less than one for all

crack lengths (see Fig. 8c).
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These observations are also summarized in Fig. (9a, b & c), where arrows

indicate appropriate quadrants in the ‘design maps’ with enhanced fracture resistance.
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We now discuss the analytical relationship between κ, a
W

and φ in a certain

asymptotic limit for exponential functions as follows

φ ≈ 1 +mlog10(κ), a

W
> 0.4 (21)

where, m = -0.194 and m = -0.1636 for a
W

= 0.5 and a
W

= 0.6, respectively. The

material contrast, κ can be used to determine the Fracture Index, φ values for crack

lengths greater than 0.4 as shown in TABLE (10).

Table 10: Fracture Index, φ values for varying material contrasts, κ

κ φ for φ for
a
W

= 0.5 a
W

= 0.6
1 1 1
10 0.80 0.83
100 0.61 0.67
1000 0.42 0.51

The values of Fracture Index, φ from TABLE (10) are superimposed on the

design map for exponential gradation (see Fig. 10) for a
W

= 0.5 and a
W

= 0.6. Hence,

the analytical relationship in Eq. (21) can be employed to predict the Fracture Index

values for κ ≥ 1.

It is now important to highlight that the ‘Fracture Index’ values from the model

validation studies conducted can also be visualized as points on the design map for

exponential gradation (see Fig. 11). These results validate data points published in

the literature by various authors such as Rao and Rahman [16], Erdogan and Wu

[13], Chen et al. [56] and Kim and Paulino [18]. In addition, experimental data can

be superimposed on the design map which highlights the universality of such maps

as any Functionally Graded Material can be mapped as a point on the (a− κ) space.
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In summary, the following observations can be inferred from the ‘design maps’

(see Fig. 12): i) In region (a), FGMs with all distributions (linear, quadratic &

exponential) offer enhanced fracture resistance; ii) In region (b), the use of exponential

distribution is not beneficial; iii) In region (c), only the use of linear and exponential

distributions offer enhancement in fracture resistance; iv) In region (d), the use of

FGMs is not recommended since the ‘Fracture Index’ is always greater than one

irrespective of the functional distribution; v) When the crack size is small, the

‘Fracture Index’ values are almost the same irrespective of the specific functional

distribution or the material contrast used; vi) Again, when κ is close to one, the

‘Fracture Index’ virtually remains the same irrespective of the functional distribution

used or the specific value of a
W
; vii) When κ = 1, the ‘Fracture Index’ φ = 1 and this

is a horizontal line in the design map representing a homogeneous material.
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Chapter 5

Conclusion and Future Work

In this thesis, several spatial variations for the Young’s Modulus were used

to generate ‘design maps’ highlighting the admissible regions for the design of

microstructures with enhanced fracture resistance. In chapter 2, we demonstrated

the mathematical background for obtaining the J-integral and its relation to the

Stress Intensity Factor for a linear elastic material under mode-I loading. In chapter

3, we presented the methodology employed in this research. It has to be noted that

in order to objectively compare various functional gradations, all microstructures

considered in this study have the same volume averaged Young’s Modulus. Based

on this constraint, several functionally graded microstructures were created and the

functions examined were linear, quadratic, exponential and cosine.

In chapter 4, several Functionally Graded Materials (FGMs) with an edge

crack length (a) and membrane loading were considered and the resulting J-integral

values were obtained numerically using Finite Element Analysis. The averages

of the J-integral values were used to determine the normalized Stress Intensity

Factors which were then benchmarked with existing analytical solutions in special

cases. This approach was repeated for a variety of material contrasts (κ) and crack

lengths. Subsequently, the concept of ‘Fracture Index’ was also introduced and its

relevance to compare a FGM to a homogeneous material was presented. It was

demonstrated that Functionally Graded Materials can be superior or inferior to the

reference homogeneous material depending upon the crack length, type of gradation

and material contrast.

On a final note, the concepts illustrated in this thesis can be applied to mode-II,

mode-III and mixed mode fracture problems in order to construct ‘design maps’ that

demonstrate admissible regions where the fracture toughness of FGMs is maximized.
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Although, only select functional distributions have been evaluated in this research,

other FGMs (for instance a Taylor’s Series expansion of the Modulus with higher

order terms included) can be easily studied and the results can be projected on the

‘design maps’, thereby highlighting the universality of such maps. Finally, the ‘design

maps’ offer a simple, yet powerful framework to enable the rational design of fracture

resistant Functionally Graded Materials.
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